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Abstract
This paper provides an analysis of neutron inelastic scattering experiments on
single crystals of UPd2Al3. The emphasis is on establishing robust general in-
ferences on the joint antiferromagnetic–superconducting state that characterizes
UPd2Al3 at low temperatures. A distinction is drawn between these conclusions
and various theoretical perspectives of a more model-sensitive nature that have
been raised in the literature.

1. Introduction

In this paper the focus is on the inferences that may be drawn from inelastic neutron-scattering
data on the nature of the antiferromagnetic–superconducting state in UPd2Al3. In particular,
the aim is to establish the scope, and limits, of global properties concerning the symmetry and
magnitude of the superconducting energy gap, �(k), and the quasiparticle pairing potential
from observed changes in spectral form on passing below Tsc. Extensive reference will hence
be made to the experimental evidence presented in the preceding topical review [1] where
the results, obtained from samples prepared and measured at independent institutes, point
to the robust nature of the thermodynamic physical properties of this material. It is this
underlying commonality that forms the backbone of the present analysis and gives credence
to the conclusions drawn.
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Whilst verification through full quantitative calculations of the neutron scattering cross
section is, to our knowledge, not feasible, it is possible to establish those signatures of the
superconducting state that follow from general arguments and to differentiate these from
conclusions of a more model-specific nature. Thus for example, detailed, band-structure
and model-dependent results will not be given since such approaches have been extensively
discussed elsewhere [2–10].

In particular it will be seen that whilst unique wavevector- and energy-dependent
information on �(k) is forthcoming, little can be said about the pairing mechanism of the
superconducting state. Indeed, with our present state of knowledge we feel unable to offer any
firm conclusions on this point. Nevertheless, symmetry constraints can be placed that serve as
a yardstick against which the various propositions may be measured. To commence, a brief
review of the underlying assumptions and constraints implicit in any analysis is given.

2. Analysis of the results

2.1. Basic considerations

Long-wavelength probes are, to a good approximation, insensitive to the translation symmetry
operations of the lattice and all periodically related repeat units respond in a similar manner.
Conventional optical and microwave spectroscopy, together with transport and thermodynamic
measurements of the superconducting state, fall in this class. Use of oriented monocrystalline
samples in conjunction with polarization techniques may yield directional sensitivity in
propitious cases; however, inferences on, for example, the energy gap are limited to its
magnitude and crystallographic point group symmetry. The unique role of inelastic neutron
scattering as a probe of �(k) lies in its simultaneous wavevector and energy selectivity on the
atomic and thermal scales, respectively. This sensitivity to the translation operations of the
lattice brings to light the primary role of the space group symmetry of �(k) and permits one to
extract previously inaccessible information.

Experimental results, as discussed in the preceding topical review [1] have established the
electronic (magnetic) origin of the anomalous scattering observed below Tsc. The present work
considers the inferences that may be drawn from such data involving the interaction of the
neutron with both the condensate and the strongly correlated electronic quasiparticles of the
superconducting state. To enable progress, an analysis of the spectral form of the generalized
magnetic susceptibility is required.

2.2. Generalized magnetic susceptibility

In the following we examine a model dynamical susceptibility wherein the generic approach is
to dissect the empirically determined χq(ω) into two, or more, distinct components. A similar
conceptual fragmentation, used for example in analyses of thermodynamic and µSR data, has
been attributed to a ‘dual’ character of the 5f wavefunction. However, independent of detailed
poles or resonances, there is only one magnetization correlation function. In cases of a multiple-
peaked structure observed in frequency and/or wavevector, as observed in the response around
Q0 (see the preceding topical review [1]), care must be taken in any decomposition to preserve
the characteristic amplitude and phase correlations of the N-body state.

2.2.1. Primitive low-frequency–high-frequency model. A primitive model for such a
structured response is to split the dynamical susceptibility into two distinct components, which
are simply summed as incoherent contributions to generate a total response function:

χ = χ1 + χ2. (1)
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At this level one may discuss independent contributions, attributed respectively to a low,
χ1, and a high, χ2, energy part of χ . An initial analysis of this form in UPd2Al3, which
highlighted the key qualitative changes observed on passing below Tsc, was presented by the
JAERI group [11]. The strong renormalization in χ1 inferred at Tsc is evidence for the influence
of superconductivity on the magnetic response function. It is, however, not proof that the
superconductivity is driven by the magnetic fluctuations.

2.2.2. Low-frequency–high-frequency coupling model. An ensuing level of sophistication
is to take a coupling, generally of mean-field form, between the low- and high-frequency
fragments of the full 5f-neutron-scattering amplitude with a fully dynamical (space-time
retarded) coupling constant, λ̄ = λ̄′(q, ω) + iλ̄′′(q, ω), in an attempt to restore at least some
of the principal correlations of the macrostate. However, in practice this method is normally
approximated by replacing λ̄ by a constant, λ, which is used in a direct calculation of the
magnetic susceptibility, i.e. calculations at the level of probabilities (scattering cross sections).
The field has an abundant literature with many, often equivalent, formalisms [12]. Even this
minimal consideration may trigger profound modifications of spectral form. Principally, such
modifications arise on account of a built-in positive feedback giving the net response a Stoner-
like denominator that acts to enhance, preferentially, the low-frequency part with a concomitant
renormalization of the effective low-energy line width, as can be seen by the following simple
argument.

First, make a conceptual fragmentation of the magnetic system into low- and high-energy
units, designated by M1 and M2, respectively, in which all internal interactions have been
included. Then, with a mean-field coupling, λ, form M1 = χ1[H + λM2] and M2 =
χ2[H + λM1] giving the total magnetization as M = M1 + M2 and susceptibility,

χ = χ1 + χ2 + 2λχ1χ2

1 − λ2χ1χ2
, (2)

where χ1 and χ2 are the individual susceptibilities, λ the mean-field coupling and the primitive
model of equation (1) is the λ → 0 limit. At low frequencies the real parts of χ1,2 tend to a
constant whilst the imaginary parts are proportional to the frequency. This, for the dissipative
component of the total susceptibility as ω → 0, yields a denominator 1 − λ2Re [χ1]Re [χ2].
In contrast, at high frequencies the susceptibilities χ1,2 tend to zero and the denominator goes
to unity. Thus, an increase in low-frequency response, ultimately driving a divergent response
and transition of phase, can be incited through an augmented value of either of χ1,2 and/or the
coupling constant. In the interest of simplicity it is often argued, as we do below, to keep the
coupling constant local in space-time and temperature independent. Schematics of the response
arising from such general coupling models for the normal antiferromagnetic state in UPd2Al3

are given in the left-hand panels of figure 1.

2.2.3. The low-energy susceptibility, χ1, in the superconducting state. The fundamental
problem facing any interpretation below Tsc is how to partition the scattered intensity between
the excitations of the normal and condensate components. In the following we examine a
general model of the dynamical susceptibility taking account of the phase coherence of the
paired state on its symmetries and amplitude to resolve this dilemma. At the same time it is used
to extract unique wavevector and energy-dependent information on the energy gap function.

The spin-susceptibility of excited quasiparticles below Tsc is modified by the effects of (i)
superconducting phase coherence and (ii) the presence of a gap in the excitation spectrum. It is
calculated in the following approximation for a singlet ground state as [13, 14] χ1 = χqp + χc,
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Figure 1. Left-hand panel: schematic of the response for T > Tsc in the normal antiferromagnetic
phase. The top frame illustrates the characteristic bi-modal scattering of UPd2Al3, which is
shown in the middle two frames as a conceptual fragmentation into a coupled low- and high-
energy response. The bottom frame is a cartoon representation of the response (thin [black]
arrow) of the normal quasiparticle states ([red] hoops) to the neutron probe (thick [green] arrows).
Central panel: the top frame is a schematic of response for T < Tsc in the superconducting
antiferromagnetic phase, shown in the middle frames as a conceptual fragmentation into a coupled
normal quasiparticle low-and high-energy response. The vanishing magnitude of the quasielastic
response occurs on account of both the gapping of the Fermi surface and the phase cancelling role
from the antiferro-periodic nodal symmetry of the condensate on such excitations in the magnetic
susceptibility (see equation (3)). The bottom frame is a schematic of the dynamic equilibrium
between the paired and Fermion states. Normal quasiparticles, above the energy gap, are marked
as red hoops and paired states, below energy gap, are designated as bound, overlapping hoops.
The phase coherent condensate influences the possible excitation processes of the normal-state
quasiparticles and such interference effects must be taken into account below Tsc in analysis of
the quasiparticle spectra (designated by a [yellow] mesh). Right-hand panel: schematic of the
response for T < Tsc in the antiferromagnetic superconducting phase, shown in lower frames as
conceptual fragmentation into a coupled condensate low-energy and normal quasiparticle high-
energy response. The enhanced magnitude of the condensate response occurs on account of
phasing role from the antiferro-periodic nodal gap symmetry on such excitations in the magnetic
susceptibility. The bottom frame is a schematic of the dynamic equilibrium between the paired
and Fermion states as in the central panel. As illustrated, direct excitation out of the condensate
may occur. Again, the superconducting energy gap has a profound influence on the intensity of
scattering at a given momentum and energy transfer, reflecting the symmetry and coherence of the
wavefunction.

(This figure is in colour only in the electronic version)
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where the quasiparticle fraction is given by

χqp(q, ω) =
∑

k

1

2

[
1 + ξ(k + q)ξ(k) + cos[�(q)]|�(k + q)||�(k)|

E(k + q)E(k)

]

× f (k + q) − f (k)

ω − [E(k + q) − E(k)] + i�
(3a)

and the condensate by

χc(q, ω) =
∑

k

1

4

[
1 − ξ(k + q)ξ(k) + cos[�(q)]|�(k + q)||�(k)|

E(k + q)E(k)

]

× 1 − f (k + q) − f (k)

ω − [E(k + q) + E(k)] + i�

−
∑

k

1

4

[
1 − ξ(k + q)ξ(k) + cos[�(q)]|�(k + q)||�(k)|

E(k + q)E(k)

]

× 1 − f (k + q) − f (k)

ω + [E(k + q) + E(k)] + i�
. (3b)

Each element is the summation over the Brillouin zone of a product of a superconducting
phase-coherence factor and a Lindhard style function. The normal-state quasiparticle fraction
χqp arises from scattering between the quasiparticle levels, while χc, the condensate fraction,
corresponds with the creation (in neutron energy loss) and condensation of quasiparticle pairs
(in neutron energy gain). The notation is standard: ξ(k) = ε(k)−εF is the quasiparticle energy
relative to the normal-state Fermi energy and E(k) = √

ξ(k)2 + |�(k)|2 is the quasiparticle
excitation energy above the superconducting state. The factor �(q) is the phase difference
between �(k) and �(k + q). It may be noted that the coherence function in equation (3) acts
in an opposite sense on the normal and condensate contributions to the cross section. This
excludes the simultaneous enhancement of the quasiparticle contribution and the condensate
fraction to the scattering cross section.

2.2.4. Interpretation of the low-energy spectra on passing below Tsc. In this section we
discuss how the observed changes to the low-energy spectra on entry to the superconducting
phase have been understood within alternative scenarios. As will be seen, the minimal
modifications to the response function (as given in equation (3)), implicit in the q-dependent
theory of the phase-coherent state, are, in themselves, sufficient to understand the observations.

A key to understanding comes from figure 2, as well as figures 2–5 in the preceding
topical review [1], which illustrates the scattering intensity around Q0. They show how the
observed quasielastic scattering well inside the normal antiferromagnetic state decreases in
proportion to kBT . This is an indication for the thermal response of a temperature-independent
intrinsic susceptibility. The abrupt discontinuity in scattering intensity below Tsc where both
the amplitude, which jumps to approximately twice that expected from the normal-state
response as shown in figure 2, and the generic form, i.e. opening of a gap in response to a
temperature dependence that no longer follows the simple kBT law, are strong indicators that
the superconducting ground state is having a profound influence on the magnetic response
function.

Differences in inference on the physical nature and symmetry of the superconducting state
then arise from attributing the measured changes in response on passing through Tsc either
(i) purely to changes in the two, frequency-decomposed, normal-state components of χ and
possibly the coupling constant, as schematized in the central panels of figure 1, or (ii) by taking
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Figure 2. The scattering observed at Q0 in the superconducting state (T = 150 mK) as experimental
points. Above Tsc, the low-energy spectrum appears as a quasielastic response together with a
higher-energy, spin-wave-like, feature. The solid line is a smooth fit to 2.5 K data (T > Tsc)
scaled by the Bose factor (with a constant background subtracted), the horizontal bar indicates the
instrumental resolution. See figures 2 and 3 in the preceding topical review [1] for further details.

into account the role of excitations out of the developing superconducting ground state, as given
in the right-hand panels of figure 1.

In the first scenario, the sole contribution to the cross section arises from quasiparticle
excitations of the normal state. To have significant spectral weight at Q0 on passing below Tsc at
low energy transfer would demand the presence of superconducting nodes commensurate with
Q0 on sheets of the Fermi surface exhibiting a significant density of quasiparticle states. Such a
situation is generally energetically unfavourable and is also at variance with available tunnelling
data [2, 15]. The observation of an enhanced spectral weight in figure 2 also implies an
additional concentration of the response in a wavevector or a frequency-amplification process,
as discussed above. The ‘tuning’ options available are that either the spin wave (exciton)
undergoes substantial changes in its amplitude, position and/or damping at these very low
temperatures, or the low-energy component changes its characteristic amplitude and/or decay
rate, and that an appropriate mixture, with or without changes in the (complex) coupling
constant λ, is found. Finally, a condition for the ‘inelastic’ nature of the low-frequency response
must be added, with such a scenario implying a new pole to have been generated in the normal-
state response function.

Following the second option, the response at low frequencies and lowest temperatures is
dominated by the condensate, as schematized in the right-hand panel of figure 1, with negligible
contribution from the normal-state excitation spectrum. Such a picture is supported by the
dramatic fall in heat capacity at temperatures well below Tsc, signalling a loss of normal-state
quasiparticle excitations to the susceptibility, due to the opening of a gap on the high-state-
density, strongly correlated sheets of the quasiparticle Fermi surface. The condensate now
plays a key role both in structuring the magnetic response on account of its phase-coherent
nature and in supplying an alternative channel of excitation.
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In the debate between these two fundamental mechanisms we consider only the response
of a singlet condensate since this is the symmetry compatible with the existing array of
thermodynamic, transport and tunnelling data ([15–18] and references therein). Alternatives,
based on spin-triplet pairing wavefunctions, which do not appear to be supported by
thermodynamic and transport measurements, are not considered in detail here even though
they may be capable of explaining some features of the neutron data [5, 16].

The myriad of possible analyses thus reduces to a choice between those two scenarios,
and a discussion is given of each type. The models considered here encompass a mean-
field coupling of two hypothetical components to χ with a simple, real, feedback parameter.
The fundamental differences that remain are then the assumed dominance by excitations
of the normal state both above and below Tsc [5, 16], whilst in [3, 19–22], at the lowest
temperatures the major contribution at low energy transfer is from the condensate. The second
point of divergence is the assertion that the nodal symmetry of the superconducting energy
gap is considered as being determined purely by the local point group symmetry [5, 16],
or that explicit account is to be taken of the underlying lattice symmetry and Fermi surface
topology [3, 7, 19–22]. These primary choices then dictate the relative amplitude and phase
symmetry of both the excitations of the normal-state quasiparticles and the excitations out of
the condensate that form the basis of further analysis.

To commence an analysis with equations (3) we note that both the absence of strong
thermal dilation effects and significant changes in magnetic moment on passing below Tsc

indicate that the low-energy quasiparticle phasing, intrinsic to the condensed state, does not
greatly alter either the lattice or the magnetic potentials which determine the Fermi surface7.
Hence the spatial symmetries of excitation matrix elements, as expressed through the Lindhard
functions, should not change. In particular, the resonant magnetic wavevector is anticipated to
remain constant8. The important aspect of the cross section is the introduction of an energy gap
in the denominator of the Lindhard sum for χc. The normal-state quasiparticle response χqp

does not acquire the corresponding gap and is expected to remain quasielastic in form below
Tsc

9.

2.3. Symmetry of �(k)

2.3.1. Spatial symmetry of �(k). The partition of the measured response in (q , ω) space
between normal and condensate excitations is most readily made on examination of the
dynamical susceptibility for excitations with minimal energy. A semi-quantitative analysis
illustrates the point. First we note that at low temperatures the Pauli principle restricts attention
to those excitations of the condensate that involve quasiparticle states lying close to the Fermi
surface, (1 − f (k + q) − f (k)) ≈ 1. The contribution of the normal-state quasiparticle to the
bare susceptibility becomes progressively weaker on lowering the temperature. Examination
of the phase-coherence factor in χ reveals that, for excitations of the lowest energy, where
the quasiparticle excitation energies ξ(k) = ξ(k + q) = 0, the phase-coherence bracket
reduces to 1 ± cos[�(q)] for the normal and condensate fractions with the upper and lower
sign, respectively. Hence, for a significant condensate response at wavevector q, �(k + q)

7 Differences in energy scale, Tsc � TN, are insufficient in themselves to ensure immunity from the potential changes
induced by phasing correlations; the issue must be established empirically.
8 This point is experimentally verified in figure 12 of the preceding topical review [1], where no new response,
significant on the scale of the emergent pole at Q0, arises below Tsc at low energy transfer.
9 An alternative point of view is expressed in [16] where normal quasiparticle excitations appear to be responsible
for the low-frequency pole below Tsc. The mechanism whereby the Lindhard function for normal-state excitations
acquires a pole is not made explicit. This normal pole is, however, held to be a measure of �(k), subject to a strong
coupling renormalization in position and width with a crystalline-electric-field (exciton) mode.
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must be the negative of �(k), at least over a sizable portion of the zone. From the observation
of an inelastic and enhanced scattering in the superconducting phase of UPd2Al3 around the
antiferromagnetic reciprocal lattice vectors (i.e. q = Q0 in equation (3)) the inferences are:

(i) that the dominant contribution arises from the condensate which
(ii) has a gap, �(k), displaying sign inversion on translation by Q0 over a major part of the

zone. That is, the observed scattering suggests a spatially antisymmetric form of � be
taken, �(k) = −�(k + Q0) [3, 7, 19–22].

The sign difference between the coherence factor for excitations from the normal, 1 +
cos[�(q)], and condensate, 1 − cos[�(q)], fractions is of further experimental importance.
In antiferro-periodic symmetry, i.e. φ(q) = π for q = Qafm, the coherence factor effectively
eliminates normal state scattering at Q0, so no quasielastic response remains enabling a clear
definition of the inelastic nature of the condensate response (see the central and right-hand
panels of figure 1). In model systems having a jellium, Q0 = 0, or lattice periodic translation
symmetry the phasing enhancement from the coherence factor reverses. In this case the
susceptibility amplification has a maximum for the gapless quasiparticle excitations from the
normal state and is small for excitations involving the condensate.

Expanding briefly on this point we recall that wavevectors Qmag spanning regions of high
density of electronic states at the Fermi surface yield an enhanced susceptibility, and hence
neutron cross section, through the Lindhard function. In order for experiments to benefit
from this in the identification of �(k) below Tsc, the wavevector of maximal phasing of the
condensate fraction must be commensurate with Qmag. Maximizing 1 − cos[�(q)] requires
φ(Qmag) = π . In a jellium approximation, or the presence of ferromagnetic correlations, this
implies �(k) = −�(k + G), where G is a vector of the reciprocal lattice, forcing �(k) = 0.
Conversely, for a minimal period of �(k) = �(k + G), in which case the condensate fraction
gives zero response at the maxima of χ , a condensate may coexist with the ferromagnetic
correlations. In this case the aspect of lattice translation invariance becomes trivial with the
nodal symmetry of �(k) being determined by the crystallographic point group. As noted, in
such materials the normal quasiparticle contribution is enhanced on passing below Tsc. This
leads to the possible observation of a modification in the quasielastic intensity and lineshape on
the energy scale of �(k). On account of the low energies involved, at the experimental level this
may be seen as a weak change in the (ferro)magnetic Bragg peak intensity. Finally, in materials
where the condensate phasing wavevector is incommensurate with that of the susceptibility,
one anticipates only indistinct signs of the transition below Tsc.

2.3.2. Spectral form of �(k). The condensate response at Q0, under the constraint of a
favourable phase-coherence symmetry and within the restriction that we consider only minimal
excitation states having ξ(k) = 0, is given by the imaginary part of the Pauli restricted
summation

∑∼
k 1/(ω − 2|�k | + i�). This is a sum of complex Lorentzian amplitudes centred

at 2|�k | and of width �. In the case that �(k) = −�(k + Q0) with |�k| independent of k,
i.e. the square wave representation of the antiferro-periodic nodal gap state (previously referred
to as the ‘antiferromagnetic s-wave’ state [3]) the response simplifies to a single pole centred
at 2� of damping, �, related to the effective quasiparticle lifetime. The presence of a sizeable
gap anisotropy, explicit in some models of the superconducting state [5, 16] would lead to
interference over a sum of complex amplitudes giving a spectral form spread in energy and of
diminished magnitude. The sharp profile of the condensate response in energy transfer observed
in UPd2Al3 thus appears to favour the conjecture of an isotropic crystallographic point group
symmetry of the energy gap over extended s- or d-wave variants [2–10, 16, 19–22] although
detailed calculations are required in each case.
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2.3.3. Spin symmetry of �(k). The deduced symmetry of the measured gap function, �(k) =
−�(k + Q0), implies �(k) = �(k + G). As a consequence �(k) follows the translation
symmetry of the crystallographic Brillouin zone, with the inference that the condensate
wavefunction is not sensitive to the magnetic potential that defines the antiferromagnetic
unit cell doubling along the hexagonal axis for the spin-polarized quasiparticles. This is, a
posteriori, consistent with the spin-pairing symmetry underlying equation (3), and in agreement
with available experimental data and detailed calculations based on the computed Fermi
surface, that the gap function is a spin singlet [2, 7, 17, 18].

Nevertheless, theoretical approaches differ on this issue. Identifying three separate
mechanisms of condensation based, respectively, on phonon exchange [24], spin-fluctuation
exchange [2, 4, 23] or a novel crystalline-electric-field (CEF) exciton mode, as proposed in
Sato et al [16] and Thalmeier [5], the results are that:

(i) A phonon-driven condensate will have an associated spin-singlet (even parity) state on
account of the Pauli principle and spin invariance under phonon exchange unless higher-
order spin–orbit driven effects are invoked. The resulting translation symmetry of the
energy gap is that of the crystallographic Brillouin zone.

(ii) The spin-fluctuation condensate may achieve either spin-singlet or spin-triplet states on
account of rotational invariance with a translation symmetry of the energy gap periodic in
the crystallographic Brillouin zone.

(iii) The CEF-exciton mode of Sato et al [16] and Thalmeier [5] is of odd parity (i.e. spin-triplet
symmetry) on account of coupling the Cooper spin pair with a local magnetic moment.
Cast within the framework of the translation symmetry of the antiferromagnetic unit cell,
the model is obliged to place the nodal region in the equatorial plane. In order to satisfy
the observed antiferromagnetic repeat wavevector �(k) then requires the orthogonal phase
symmetry, i.e. �(k) ∼ sin(ckz), where c is the lattice parameter and kz is the z component
of k [3], to that invoked above.

From (i) and (ii), and as a rather robust and general conclusion highlighted by Oppeneer
and Varelogiannis [7] in their detailed calculations based on the computed Fermi surface in
UPd2Al3, the observed symmetry of the gap function is not universally tied to any particular
pairing mechanism. Thus, for example, Oppeneer and Varelogiannis show that either phonon
or spin-fluctuation pairing are capable of producing both s-wave and d-wave condensates with
the self-consistent computed gap in both cases following the symmetry of the crystallographic
Brillouin zone in agreement with the general comments given above.

In a highly original analysis used to interpret a model cross section by Sato et al [16], and
made explicit by Thalmeier [5], the basic ingredient is a fragmentation of the 5f shell into a
local moment and itinerant state, with the local-moment dynamics described as an excitation
of coupled ionic CEF levels. This yields a superconducting state of odd parity (i.e. spin-
triplet symmetry) on account of coupling the Cooper spin pair with the magnetic moment,
a conclusion apparently in contradiction with the inferences of available thermodynamic and
transport data. A central role of the exciton mode in the vicinity of Q0 is ensured by the
condition of its accidental degeneracy with the magnitude of the superconducting energy gap
at each T < Tsc. This assumption appears to require both a substantial superconducting
energy-gap maximum at the Q0 point in the zone and a change in nature of the normal-state
response below Tsc, apparently at variance with, on the one hand, interpretation of tunnelling
measurements [2, 15] and, on the other, the implications of equation (3). Additionally, since
the neutron response arising from the condensate is given by a Lindhard sum over all |�(k)|
(see equation (3) and the discussion in section 2.3.3), the implied variance of |�(k)| would
be expected to result in a broad, weak spectral form as opposed to the strongly enhanced
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resonance observed in figure 2. The softening of the zone centre CEF level (exciton) on
entering the superconducting phase required to generate sufficient feedback enhancement in
the low-frequency mode of ∼30% is certainly dramatic evidence of Tsc in this scenario given
it is taken to represent the stable, (quasi)-localized, 5f component of the response. Further, the
fundamental assumption of strongly localized 5f levels is difficult to reconcile with the lack
of observation of CEF levels in the paramagnetic state [25] and the success of ab initio band-
structure calculations using the delocalized LSDA approach to reproduce experimental Fermi
surface areas, as measured by the de Haas–van Alphen (dHvA) effect, which are often taken as
an indication that the 5f levels are largely delocalized [26, 27].

2.4. Tunnelling, Fermi surface topology and |�(k)|
The interpretation of tunnelling data underlines the importance of the space group symmetry
of the energy gap. As the neutron scattering response reveals, in UPd2Al3 the lattice symmetry
appears to be determinant, enforcing nodes of the energy gap that are periodic within the
Brillouin zone. The additional constraint of Fermi surface topology favours an energy gap with
nodal structure in the vicinity of low-density quasiparticle states; a conclusion corroborated in
UPd2Al3 by the rapid decrease of heat capacity below Tsc [17, 18]. Examination of the band
structure in UPd2Al3 shows that the antiferro-periodic nodal gap state obeys this criterion with
the high-state-density ‘egg’ Fermi surface sheet [26], as identified in both inelastic neutron
scattering [19–22] and tunnelling experiments [2, 15], lying close to, but inside, the Brillouin
zone boundary [3].

The available measures of |�|, from both tunnelling and inelastic neutron scattering at the
comparable point in the zone, thus support a gap function with nodes along c∗. In other words,
with minimal assumption it appears unnecessary to invoke a d-wave point-group character of
the energy gap. Indeed, the totally symmetric, A1g, s-wave point group, in conjunction with the
Fermi surface as calculated, and substantiated through independent dHvA measurements [27],
is able to account not only for the very good correlation in magnitude of the gap along the c∗
axis, as determined by both tunnelling and neutron spectra, but also for the observation of many
apparently anomalous thermodynamic and transport properties in this material [3].

2.5. Coupling schemes for superconductivity

Whilst valuable new information on the magnitude and symmetry of the energy gap is available,
the use of inelastic neutron scattering to determine the coupling mechanism of the condensed
state is speculative unless detailed quantitative calculations for the cross section are available.
As a basis for discussion, one may ask such exercises to (i) yield a parity of the proposed
superconducting paired state in agreement with that inferred from thermodynamic and transport
data and (ii) offer a rationale for the appearance of an energy gap with (iii) an enhanced
excitation below Tsc in the inelastic neutron-scattering spectra at (iv) one select point in the
Brillouin zone, i.e. of defined translation symmetry, as demonstrated by the extensive mappings
of χ(q, ω) presented in the preceding topical review [1]. These four basic measures may
then serve as a yardstick against which to compare the strikingly different model coupling
mechanisms presented [2, 4–10].

3. Conclusion

The purpose of this paper has been to present the minimal requirements of any analysis of the
low-temperature magnetic inelastic response in UPd2Al3. Inferences on the renormalization
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of electronic correlations in the superconducting state are made on the basis of differences in
neutron-scattering spectral weight on passing below Tsc. In any approach, the critical influence
of phase correlations that characterize the superconducting ground state on excitations of both
the normal-state and condensate fractions must be taken into account.

In UPd2Al3 the observed differences permit robust inferences of the global gap symmetry,
which embody the lattice translation invariance, in addition to estimates of its magnitude at
selected points in the Brillouin zone. In this context it is of interest to note that the increasing
range of antiferromagnetic quasielastic correlations to ∼100 Å on cooling to Tsc (figure 4
in [1]), approaches the estimated coherence length of the condensate [17, 18]. This suggests
that the passage to the superconducting critical point may be foreshadowed in the response
of the normal phase. When below Tsc, the quasielastic scattering apparently vanishes to be
replaced by the gapped condensate response (figure 2).

Following the assumptions of the ‘second scenario’ discussed (right-hand panels of
figure 1) the condensate plays a key role both in structuring the magnetic response and in
providing an alternative excitation channel. The totally symmetric, A1g, s-wave point group is
able to account for a superconducting gap along the c∗ axis, as observed by both tunnelling
and neutron inelastic experiments, and for many apparently anomalous thermodynamic and
transport properties [3].

On the other hand, the neutron data give little information about the detailed pairing
mechanism itself [7]. Such inferences rapidly become highly model sensitive, both on account
of theoretical approximation schemes adopted and numerical complexity in calculation. The
situation is further aggravated in cases where the multi-modal nature of χ(ω), with the inherent
need for some decoupling approximation [3, 16, 19–22], gives parametric uncertainty in
positions and widths of the modes.

Further progress will rely on improvements in the experimental technique, discoveries
of other model systems and a deeper understanding of the generic problem of coupled order
parameters.
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88 186404
[7] Oppeneer P M and Varelogiannis G 2003 Phys. Rev. B 68 214512
[8] Zwicknagl G, Yaresko A and Fulde P 2003 Phys. Rev. B 68 052508

http://dx.doi.org/10.1007/s100510050087
http://dx.doi.org/10.1007/s100510050086
http://dx.doi.org/10.1103/PhysRevB.63.052508
http://dx.doi.org/10.1103/PhysRevB.70.014513
http://dx.doi.org/10.1103/PhysRevLett.88.186404
http://dx.doi.org/10.1103/PhysRevB.68.214512
http://dx.doi.org/10.1103/PhysRevB.68.052508


5972 N Bernhoeft et al

[9] Ikeda H 2003 J. Phys.: Condens. Matter 15 S2247
[10] Nisikawa Y and Yamada K 2002 J. Phys. Soc. Japan 71 237
[11] Metoki N, Haga Y, Koike Y and Onuki Y 1998 Phys. Rev. Lett. 80 5417
[12] Lovesey S W 1984 Theory of Neutron Scattering from Condensed Matter (Oxford: Oxford University Press)

Buyers W J L and Holden T M 1985 Handbook on the Physics and Chemistry of the Actinides ed A J Freeman and
G H Lander (Amsterdam: Elsevier) pp 239–327

[13] Lu J P 1992 Phys. Rev. Lett. 68 125
[14] Lavanga M and Stemmann G 1994 Phys. Rev. B 49 4235
[15] Jourdan M, Huth M and Adrian H 1999 Nature 398 47
[16] Sato N K, Aso N, Miyake K, Shiina R, Thalmeier P, Varelogiannis G, Geibel C, Steglich F, Fulde P and

Komatsubara T 2001 Nature 410 340
[17] Geibel C, Schank C, Thies S, Kitazawa H, Bredl C D, Bohm A, Rau M, Grauel A, Caspary R, Helfrich R,

Ahlheim U, Weber G and Steglich F 1991 Z. Phys. B 84 1
[18] Feyerherm R, Amato A, Gygax F N, Schenk A, Geibel C, Steglich F, Sato N and Komatsubara T 1994 Phys. Rev.

Lett. 73 1849
[19] Bernhoeft N, Sato N, Roessli B, Aso N, Hiess A, Lander G H, Endoh Y and Komatsubara T 1998 Phys. Rev. Lett.

81 4244
[20] Bernhoeft N, Roessli B, Sato N, Aso N, Hiess A, Lander G H, Endoh Y and Komatsubara T 1999 Physica B

259–261 614
[21] Bernhoeft N, Roessli B, Sato N, Aso N, Hiess A, Lander G H, Endoh Y and Komatsubara T 2000 Physica B

281/282 993
[22] Bernhoeft N 1999 Electron Correlations and Materials Properties ed A Gonis, N Kioussis and M Ciftan

(New York: Kluwer Academic, Plenum) p 137
[23] Millis A J, Monien H and Pines D 1990 Phys. Rev. B 42 167

Monthoux P and Lonzarich G G 1999 Phys. Rev. B 59 14598
[24] Schrieffer J R 1964 Theory of Superconductivity (New York: Benjamin-Cummings)
[25] Krimmel A, Loidl A, Eccleston R, Geibel C and Steglich F 1996 J. Phys.: Condens. Matter 8 1677
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